Codimension-one foliations of spheres

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codimension One Symplectic Foliations

We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.

متن کامل

Elimination of Resonances in Codimension One Foliations

The problem of reduction of singularities for germs of codimension one foliations in dimension three has been solved by Cano in [3]. The author divides the proof in two steps. The first one consists in getting pre-simple points and the second one is the passage from pre-simple to simple points. In arbitrary dimension of the ambient space the problem is open. In this paper we solve the second st...

متن کامل

A non-existence theorem for Morse type holomorphic foliations of codimension one transverse to spheres

We prove that a Morse type codimension one holomorphic foliation is not transverse to a sphere in the complex affine space. Also we characterize the variety of contacts of a linear foliation with concentric spheres.

متن کامل

Codimension One Spheres Which Are Null Homotopic

Grove and Halperin [3] introduced a notion of taut immersions. Terng and Thorbergsson [5] give a slightly different definition and showed that taut immersions are a simultaneous generalization of taut immersions of manifolds into Euclidean spaces or spheres, and some interesting embeddings constructed by Bott and Samelson [1]. They go on to prove many theorems about such immersions. One particu...

متن کامل

Lie Algebras of Vector Fields and Codimension One Foliations

LIE ALGEBRAS OF VECTOR FIELDS AND CODIMENSION ONE FOLIATIONS

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1971

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1971-12730-1